Nº. d	le Inscrição	
-------	--------------	--

Universidade Federal de Goiás Instituto de Química

Coordenação de Pós-Graduação em Química

EXAME DE SELEÇÃO DO MESTRADO EM QUÍMICA - 2015/1

IDENTIFICAÇÃO DO	CANDIDATO -	- Número de	Inscrição:	

INSTRUÇÕES IMPROTANTES:

- identifique TODAS as folhas com seu número de inscrição;
- responda **oito (08)** questões escolhendo **APENAS duas (02)** de cada conjunto designado pelas letras **A**, **B**, **C** e **D**. No caso de responderem **03 (três)** em cada conjunto serão corrigidas apenas duas em ordem numérica;
- a prova deve ser realizada sem consulta;
- responda às questões somente nas páginas em que elas estão impressas;
- respostas a lápis não serão consideradas;
- o uso de celular ou outro equipamento de comunicação não é permitido;
- é permitido o uso de calculadora. Não é permitido o empréstimo de materiais;
- consta no final deste caderno de provas uma Tabela Periódica.

No. de Inscrição

A1. O grupo dos halogênios é o único da tabela periódica em que suas substâncias elementares encontram-se nas CNTP nos três estados físicos da matéria [I₂ (sólido), Br₂ (líquido) e F₂ e Cl₂ (gasoso)]. Explique essa tendência e faça uma previsão de solubilidade aquosa de cada substância.

No.	de	Inscrição	

A2. Discuta a seguinte afirmação: "O modelo de Lewis para as ligações químicas se contrapõe ao Princípio da Incerteza de Heisenberg".

No. de Inscrição	
------------------	--

A3. O óxido de alumínio, Al_2O_3 , é universalmente conhecido como alumina. A α -alumina ou coríndo pode apresentar impurezas, ou seja, alguns íons Al^{3+} da rede cristalina podem ser substituídos por outros íons metálicos, gerando assim gemas como, por exemplo, o rubi (que contém impureza de Cr^{3+}). Já o mineral berilo, $Be_3Al_2(Si_6O_{18})$, pode também ser encontrado na natureza contendo algumas impurezas, ou seja, alguns íons Al^{3+} podem ser substituídos por íons Cr^{3+} , dando origem à esmeralda. Em ambos minerais, coríndo e berilo, os íons Al^{3+} e as impurezas estão envolvidos em um ambiente octaédrico, onde os ligantes são oxigênio. Usando os seus conhecimentos e a Teoria de Campo Cristalino (TCC), explique por que o rubi apresenta uma coloração vermelha enquanto a esmeralda uma coloração verde.

No.	de	Inscrição	

- **B1**. A equação de Van der Waals, $p = RT/(V_m b) a/V_m^2$ é utilizada para calcular a pressão de gases reais levando em conta interações moleculares. Em um recipiente de 200 mL, foram colocados 14,4 g de gás butano a 25 °C. Responda:
- **a)** Calcule a pressão de acordo com a equação dos gases ideais e de acordo com a equação de Van der Waals.
- **b)** Se gás etano for colocado na mesma quantidade molar, qual a pressão de acordo com a equação de Van der Waals?
- c) Discuta as diferenças encontradas.

Dados: Butano (a = 14,47 L^2 .atm.mol $^{-2}$ e b = 0,1226 L.mol $^{-1}$); Etano (a = 5,56 L^2 .atm.mol $^{-2}$ e b = 0,0638 L.mol $^{-1}$)

 $R = 0.0821 \text{ atm.L.mol}^{-1} \text{ K}^{-1}$; $V_m = V/n$.

No.	de	Inscrição	

- **B2**. A entalpia de combustão do benzeno é -3268,0 kJ.mol⁻¹ a 25 °C, enquanto que a entalpia de formação do ciclo-hexano é -156,0 kJ.mol⁻¹. Responda:
- a) Calcule a entalpia de formação do benzeno sabendo que $\Delta_f H$ [H₂O (I)] = -286,0 kJ.mol⁻¹; $\Delta_f H$ [CO₂ (g)] = -394,0 kJ.mol⁻¹.
- **b)** Calcule a entalpia de hidrogenação do benzeno.
- c) Verifique se a hidrogenação do benzeno é uma reação espontânea ou não. Mostre todas as equações químicas envolvidas nos processos.

Dados: As entropias molares do benzeno, do ciclo-hexano e do gás hidrogênio são: +173,3 J.K⁻¹.mol⁻¹, +204,3 J.K⁻¹.mol⁻¹ e +130,7 J.K⁻¹.mol⁻¹, respectivamente.

No.	de	Inscrição	
110.	uc	mocriquo	

B3. Considere a reação abaixo:

$$CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3 H_2(g)$$

- a) Verifique se essa reação é espontânea no sentido de produção de hidrogênio, quando reagentes e produtos são misturados nas condições padrão (1 bar e 298 K).
- b) Calcule a constante de equilíbrio (K_p) da reação a 298 K.
- c) Em que sentido a reação é espontânea quando as pressões forem 2, 3, 6 e 12 bar para CH_4 , H_2O , CO e H_2 , respectivamente?

Dados a 298 K:
$$\Delta_f G^{\circ}$$
 (CH₄, g) = -50,7 kJ mol⁻¹; $\Delta_f G^{\circ}$ (H₂ g) = 0 $\Delta_f G^{\circ}$ (H₂O, g) = -228,6 kJ.mol⁻¹ $\Delta_f G^{\circ}$ (CO, g) = -137,17 kJ.mol⁻¹ R = 8,3145 J.K⁻¹.mol⁻¹

No.	de	Inscrição	

C1. Escreva as projeções de Newman, nomeie e estime a conformação mais estável do etileno glicol (HO–CH₂–CH₂–OH).

C2. Determine a configuração das ligações duplas do ácido retinóico (vitamina A) e indique o número de estereoisômeros possíveis.

c3. Quais moléculas reagiriam mais rapidamente com o íon CN^- em um mecanismo tipo S_N2 ? Enumere estas moléculas em ordem crescente de reatividade e explique.

$$H_3C-OH$$
 H_3C-OH H_3C

Dados:

No. de	Inscrição	
--------	-----------	--

D1. Em um laboratório, um analista pesou uma massa de NaCl igual a 0,120 g, a qual foi dissolvida em água para preparar 250 mL de solução. Considerando a pureza do reagente igual a 98%, calcule a concentração de NaCl em:

- a) mol.L⁻¹.
- b) partes por milhão (ppm).

No.	de	Inscrição	

D2. Considere as três soluções indicadas a seguir:

Solução 1. NaOH 1,0x10⁻⁶ mol.L⁻¹.

Solução 2. CH₃COOH 0,100 mol.L⁻¹.

Solução 3. CH₃COONa 0,100 mol.L⁻¹.

a) calcule o pH da solução 1.

b) calcule o pH de uma solução preparada pela mistura de 50 mL da solução 2 com 50 mL da solução 3.

Dados: K_a (CH₃COOH) = 1,8x10⁻⁵

$$K_W = 1.0 \times 10^{-14}$$

No.	de	Inscrição	

D3. O fluoreto de cálcio apresenta constante do produto de solubilidade igual a $5.3x10^{-9}$. Calcule a solubilidade (a 25 °C) desse composto:

- a) em água.
- b) na presença de fluoreto de sódio 0,100 mol.L⁻¹.

TABELA PERIÓDICA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1	1																2
1																	2
H																	He
1		7									İ		1	1		1	
3	4											5	6	7	8	9	10
Li	Be											В	C	N	О	F	Ne
7	9											11	12	14	16	19	20
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	\mathbf{S}	Cl	Ar
23	24											27	28	31	32	35,5	40
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	${f V}$	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39	40	45	48	51	52	55	56	59	58,7	63,5	65	70	72,6	75	79	80	84
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	$\mathbf{A}\mathbf{g}$	Cd	In	Sn	Sb	Te	I	Xe
85,5	87,6	89	91	93	96	(99)	101	103	106,4	108	112	115	119	122	128	127	131
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La-Lu	Hf	Ta	${f W}$	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
133	137		178,5	181	184	186	190	192	195	197	200,6	204	207	209	(210)	(210)	(222)
87	88	89-103	104	105	106	107	108	109			•			•	•		
Fr	Ra	Ac-Lr	Rf	Db	Sg	Bh	Hs	Mt									
(223)	(226)		(260)	(262)	(263)	(262)	(265)	(266)									

Número Atômico

Símbolo

Massa Atômica

Série dos lantanídeos

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
139	140	141	144	(147)	150	152	157	159	162,5	165	167	169	173	175

Série dos actinídeos

•	belle tob termine ob														
	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	(227)	232	(231)	238	(237)	(242)	(243)	(247)	(247)	(251)	(254)	(253)	(256)	(253)	(257)